The Generalized Spike Process, Sparsity, and Statistical Independence
نویسنده
چکیده
We consider the best sparsifying basis (BSB) and the kurtosis maximizing basis (KMB) of a particularly simple stochastic process called the “generalized spike process”. The BSB is a basis for which a given set of realizations of a stochastic process can be represented most sparsely, whereas the KMB is an approximation to the least statistically-dependent basis (LSDB) for which the data representation has minimal statistical dependence. In each realization, the generalized spike process puts a single spike with amplitude sampled from the standard normal distribution at a random location in an otherwise zero vector of length n. We prove that both the BSB and the KMB select the standard basis, if we restrict our basis search to all possible orthonormal bases in Rn. If we extend our basis search to all possible volume-preserving invertible linear transformations, we prove the BSB exists and is again the standard basis, whereas the KMB does not exist. Thus, the KMB is rather sensitive to the orthonormality of the transformations, while the BSB seems insensitive. Our results provide new additional support for the preference of the BSB over the LSDB/KMB for data compression. We include an explicit computation of the BSB for Meyer’s discretized ramp process.
منابع مشابه
Sparsity vs. Statistical Independence in Adaptive Signal Representations: A Case Study of the Spike Process
Finding a basis/coordinate system that can efficiently represent an input data stream by viewing them as realizations of a stochastic process is of tremendous importance in many fields including data compression and computational neuroscience. Two popular measures of such efficiency of a basis are sparsity (measured by the expected lp norm, 0 < p ≤ 1) and statistical independence (measured by t...
متن کاملBayesian Inference for Spiking Neuron Models with a Sparsity Prior
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full posterior distribution over all weights. In addition, we use a Laplacian prior to favor sparse solutions. Therefore, stimulus features that do not ...
متن کاملCapturing Spike Variability in Noisy Izhikevich Neurons Using Point Process Generalized Linear Models
To understand neural activity, two broad categories of models exist: statistical and dynamical. While statistical models possess rigorous methods for parameter estimation and goodness-of-fit assessment, dynamical models provide mechanistic insight. In general, these two categories of models are separately applied; understanding the relationships between these modeling approaches remains an area...
متن کاملIndependence of an Equivariant and Invariant Functions in Generalized Normal Family
In this paper we explain a necessary and sufficent condition for independence between any arbitrary statistics with sufficient statistics which is also maximum likelihood estimator in a general exponential family with location and scale parameter namely generalized normal distribution. At the end, it is shown that the converse is true except in the asymptotic cases.
متن کاملBayesian Inference for Structured Spike and Slab Priors
Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001